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Dose finding with longitudinal data:
simpler models, richer outcomes

Xavier Paolettia*†‡, Adélaïde Doussau,a,b Monia Ezzalfani,a
Elisa Rizzoc and Rodolphe Thiébautb

Phase I oncology clinical trials are designed to identify the optimal dose that will be recommended for phase II
trials. This dose is typically defined as the dose associated with a certain probability of severe toxicity at cycle 1,
although toxicity is repeatedly measured over cycles on an ordinal scale. Recently, a proportional odds mixed-
effect model for ordinal outcomes has been proposed to (i) identify the optimal dose accounting for repeated
events and (ii) to provide some framework to explore time trend. We compare this approach to a method based
on repeated binary variables and to a method based on an under-parameterized model of the dose–time toxicity
relationship. We show that repeated binary and ordinal outcomes both improve the accuracy of dose-finding
trials in the same proportion; ordinal outcomes are, however, superior to detect time trend even in the presence
of nonproportional odds models. Moreover, less parameterized models led to the best operating characteristics.
These approaches are illustrated on two dose-finding phase I trials. Integration of repeated measurements is
appealing in phase I dose-finding trials. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Background

Phase I oncology clinical trials are the first step of clinical development for a new drug. They are designed
to evaluate the toxicity profile of the drug and to recommend a dose whose activity will be investigated
in further trials. For decades, the fundamental underlying assumption in oncology for cytotoxic agents
was ‘more is better‘. According to this assumption, the dose recommended for phase II is based on the
dose level corresponding to the maximum tolerated dose (MTD). Because of the high proportion of life-
threatening events in this setting, cancer patients are enrolled sequentially in phase I trials at increasing
dose levels, starting with a dose level having a low probability of severe toxicity. Treatment is usually
administered in cycles that are repeated up to the progression of the disease or occurrence of unacceptable
toxicity or patients refusal. Cycle duration commonly lasts 3 to 4 weeks, even in trials with continuous
drug administration. The main endpoint is the toxicity induced by the treatment. Severity of toxicity in
cancer clinical trials is graded according to the common terminology criteria for adverse events from
the National Cancer Institute [1], which ranges from 1 (mild adverse event) to 4 (life-threatening) and
5 (toxic death). It is measured after each cycle of treatment, providing repeated data. Classically, the
MTD is a dose associated with a predefined probability (between 20% to 30% [2]) of severe grade 3
or 4 nonhematological toxicity or grade 4 hematological toxicity, called dose-limiting toxicity (DLT)
evaluated on the first cycle of treatment. The main outcome is then a single binary variable providing
limited information. Two families of methods have been developed to find this dose, sometimes called
algorithmic and model-based dose-escalation designs. One of the attractive method for dose finding is
the continual reassessment method (CRM or CRML when likelihood inference is used) [3], an adaptive
method that relies on models of the risk of toxicity at cycle 1. As for the standard algorithmic method
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(so-called 3 + 3), any information beyond cycle 1 is discarded. Alternatively, the accelerated titration
design, a commonly used extension of the 3 + 3 [4], is one of the only methods that proposes the use of
toxicity data from subsequent cycles in the design. Nevertheless, after the first DLT, the design is similar
to the 3 + 3, and information beyond cycle 1 is not formally analyzed to identify the MTD.

New classes of molecules, the targeted agents, which first appeared in the late 1990s, raise specific
issues compared with cytotoxic agents: (i) the maximum tolerated dose may not be the best choice for
the recommended dose, because the hypothesis of an increasing relationship between dose and activity
may no longer be appropriate [5]; (ii) the definition of dose-limiting toxicities may also include mild to
moderate toxicity, because the toxicity profile is different from what is commonly observed with cytotoxic
agents [6]; (iii) the risk of cumulative or late toxic side events may considerably limit the chance of success
of these agents as they are administered over long periods (even until disease progression for treatment
of advance stages), while cytotoxic were commonly administered for a maximum of six or eight cycles.
Due to these specificities, the definition of the MTD for the targeted agents has then been challenged by
the DLT-TARGETT task force led by the European Organization for Research and Treatment of Cancer
(EORTC) [7, 8]. One of the main conclusions highlighted the importance of analyzing data collected at
all cycles in identifying the MTD. The authors also stressed the need to fine-tune the assessment of the
MTD in an expansion cohort.

When the DLTs can occur at different treatment cycles, several definitions of the MTD can be drawn.
One possible measure is the time to DLT first occurrence. The MTD is then defined as a dose associated
with a predefined risk of cumulative toxicity over a given period and the method of choice is the time
to event CRM (tite-CRM) [9]. An alternative measure is the risk of DLT at each cycle. The MTD is
then the dose associated with a predefined risk of DLT per cycle. The present study focuses on this last
setting. A practical dose-finding approach derived from the CRML and based on the risk of toxicity at
each cycle (the proportional odds mixed-effect regression model (POMM)-CRML) has been proposed
by Doussau et al. [10]. A proportional odds (PO) relationship is assumed to model longitudinal ordinal
outcomes (mild, moderate, or severe toxicity). The two main advantages of using longitudinal data are: (i)
to substantially improve the ability to identify the MTD in the absence of strong intra-patient correlation;
(ii) to set a framework for estimating the probability of toxicity over time, which would suggest that there
is a risk of late or cumulative effects. However, proportional odds assumption has been showed to be of
limited interest to conduct trials based on cycle 1 only [11, 12]. Furthermore, our previous work showed
the difficulty to fit proportional odds mixed-effect models to scarce longitudinal data.

In this communication, we explore the interest of modeling longitudinal ordinal outcomes compared
with longitudinal binary outcomes and the impact of using under-specified working models to estimate the
probability of toxicity. Simpler under-parameterized odds proportional models may help tackle the esti-
mation difficulties and improve the operating characteristics of the dose-finding approach. In Section 2,
we introduce two motivating examples. In Section 3, we present the general approach for the use of lon-
gitudinal ordinal or binary toxicity data. In Section 4, we compare the various approaches using either
binary or ordinal data as well as several models with special attention to the detection of a time trend.
Finally, in Section 5, we apply the methods to the two examples.

2. Motivating examples

In the two phase I clinical trials of targeted agents used as motivating examples, data collected after
cycle 1 were not formally included in the process to recommend a dose for phase II. The impact of this
complementary information is investigated in Section 5.

2.1. The ITCC/erlotinib-RT trial

The European consortium for innovative therapies for children with cancer (ITCC) carried out a phase I
trial of erlotinib, a tyrosine kinase inhibitor, in combination with radiotherapy in children with glioblas-
toma [13]. An adaptation of the CRML [14] was used to identify the dose associated with a 20%
probability of DLT. The DLT assessment period was taken over the first two cycles (6 weeks) of treat-
ment. Twenty children were evaluated at three increasing doses of erlotinib ranging from 75 to 125mg/m2.
Two DLTs were observed: fatal grade 5 seizures, and grade 3 skin rash and pruritus. The probability of
DLT at d3 = 125mg/m2 after all patients had been included was 16% (95% CI: 4–45%), and this dose
was recommended for phase II studies. A total of 96 cycles were delivered to 20 patients; 12 children
completed six cycles of treatment. Six children (26 cycles) received 75mg/m2, six children (34 cycles)
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received 100mg/m2, and eight children (36 cycles) received 125mg/m2. Nineteen cases of grade 2 toxi-
city and seven cases of grade 3 to 5 toxicity (in six patients) were recorded during the first six cycles of
treatment, including six severe toxicity after the first cycle.

2.2. The EORTC/R-Viscum Trial

The EORTC carried out a phase I trial of intravenous aviscumine, in adult patients with solid tumors [15].
The CRML was used to identify the dose associated with a 20% probability of DLT during the first
3 weeks of treatment [16]. A total of 41 patients were evaluated at 14 increasing doses ranging from 10
to 6400ng/kg. Four DLTs were observed: one case of fatigue and three cases of hepatitis. The probability
of DLT at d13 = 5600ng/kg after all patients had been included was 16% (95% CI: 7–37%), which was
the dose recommended for phase II studies. A total of 97 cycles were administered (94 cycles 1 to 6);
three patients completed six cycles of treatment. The worst grades were grade 2 in 34 cycles and grade 3
in seven cycles, including two severe toxicity that occurred after the first cycle.

3. Methods for longitudinal data

3.1. Notations

Let us assume that n patients are to be sequentially enrolled in a dose-finding trial with K dose levels,
d1,… , dK , dk representing the dose at level k. Considering that a patient i is treated at the same dose
throughout the trial at all cycles j = 1,… , J, we denote Xi = Xi1 = … = XiJ the dose level administered
and tij the times associated with day 1 of each cycle j. Let Yij denote an ordinal variable with three levels,
representing the severity of the worst adverse events occurring at cycle j of treatment. The outcome Yij
takes value 1 if no toxicity or grade 1 toxicity is observed, 2 for moderate grade 2 toxicity, and 3 for
severe toxicity greater than grade 3. The severe toxicity at cycle 1, Yi1 = 3, then corresponds to the usual
definition of DLT. Let pjg(dk, tij) = Pr(Yij = g|Xi = dk, tij) be the probabilities of outcome g, g = 1 to 3 at
cycle j and dose dk.

Definition of the MTD depends on the type of endpoint considered. In the usual framework, this is the
dose with probability of toxicity at cycle 1 closest to the target 𝜏. If time to event data are considered, this
is the dose associated with a cumulative risk of DLT over the predefined period of DLT assessment (for
instance, six cycles). With longitudinal data, the MTD is the dose with a probability of DLT per cycle
closest to 𝜏 and hence verifying argmindk

|Pr(Yij = 3|Xi = dk, tij) − 𝜏| in the absence of a time effect.
If the risk of DLT is modified with cumulative treatment, then we assume that the dose recommended
for phase 2 cannot be defined using toxicity as unique endpoint. Of note, the MTD definition does not
integrate moderate toxicity.

3.2. General model and estimation

Doussau et al. (2013) estimated the probabilities of graded toxicity using the POMM [17, 18]. The risk
of toxicity is assumed to be subject specific, and a random intercept ui accounts for the expected inter-
patient variability for the risk of DLT at a dose. Let us denote qjg(dk, tij) = P(Yij ⩽ g|Xi = dk, tij)) =∑g

𝓁=1
pj𝓁(dk, tij). As q3 = 1, the cumulative logits can be described with two functions:

logit qjg

(
dk, tij

)
= logit

(
P
(
Yij ⩽ g|Xij = dk, tij

))
= 𝛼g − 𝛽1dk − h

(
tij
)
− ui, g = 1, 2 (1)

where ui follows a normal density f of variance 𝜎2
0 , ui ∼  (0, 𝜎2

0), and h is some function of time
that takes value 0 at ti1. We denote 𝜃 the vector of all parameters. As patients are assumed to be repeat-
edly treated at the same dose level, delayed or late dose effects are confounded with cumulative effect.
Model (1) can be rewritten in terms of Xij the allocated dose at each cycle:

qjg = 𝛼g − 𝛽1xi1 − h
(
xij

)
− ui, j = 2… J (2)

where h captures now the cumulative dose effect. For a given agent, functional form of h should depend
upon the pharmacological properties of the agent; for instance, the risk of toxicity may be proportional
to the drug exposure at a given cycle and h would be an expression of the clearance. Such model would
be quite difficult to specify in first-in-man trials, but it may be extremely useful for dose-finding trials
carried out in sub-populations such as in children, where h may be known prior to the trial initiation. In
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the following, we stick to the formulation (1). In theory, h may take any form, bearing in mind that less
than 10% of the patients receive more than six cycles and only very simple relationships can be explored.
The probabilities of severe and of moderate or severe toxicity respectively are monotonically increasing
functions of the dose and are assumed to be related by a proportional odds model.

Given the observations of the dose and event outcomes at a given time point of the trial, (xi, yij, tij), the
likelihood for the parameter vector 𝜃, is

L
(
yij, xi, tij|𝜃

)
=
∏

i,j

(
p1j

(
xi, tij|ui

))Iyij=1 ×
(
p2j

(
xi, tij|ui

))Iyij=2 ×
(
p3j

(
xi, tij|ui

))Iyij=3 × f
(
ui, 𝜎

2
0

)
(3)

where I[yij=g
] takes value 1 if Yij = g and 0 otherwise. As the random effect is unknown, evaluation of L

must integrate the random effect distribution f . No closed form is available, and maximization is obtained
using Laplace approximation and adaptive Gauss–Hermite quadrature.

Fitting such a model to scarce data is challenging. Complex models are usually tackled with the help of
Bayesian inference and slightly informative priors [19]. Alternatively, in the spirit of the CRML, simpler
‘working’ models can be explored. Shen and O’Quigley [20], followed by Cheung et al. [21] showed the
good asymptotic properties of the CRML under model mis-specification. In particular, the recommended
dose converges to the true MTD, and the estimate of the risk of DLT converges to its true value when the
sample size goes to infinity under some constraints.

The key point is that adaptive sampling at the best current estimate of the MTD entails accumulation
of information on a very limited number of doses that in turn represent the main contribution to the
likelihood of the model, making local model goodness-of-fit sufficient. Reasons for not working with a
richer CRML model are outlined in several contributions [20–22]. Using the same reasoning, we propose
simplified models to conduct the trial using longitudinal data.

3.3. Simplified models for ordinal endpoint

Doussau et al. [10] used model (4) for conducting the patients’ allocation and model (5) that assumed a
simple linear function of time h(tij) = 𝛽2 × tij for estimating and testing a time effect after completion of
the trial:

logit qjg

(
dk, tij

)
= 𝛼g − 𝛽1 × dk − ui (4)

logit qjg

(
dk, tij

)
= 𝛼g − 𝛽1 × dk − 𝛽2 × tij − ui (5)

where ui ∼  (0, 𝜎2
0), ti1 = 0 and g = 1, 2. In the absence of time effect, the cumulative probability per

cycle, qjg(dk, tij) is denoted qg(dk).
This model is more flexible than the class of single-parameter models developed with the CRML. We

will then compare this model with a reparameterized model where the parameter 𝛽1 is supposed a known
constant, 𝛽c.

3.4. Simple models for the binary endpoint

In the previous section, the target dose was defined in terms of the risk of severe toxicity for an ordinal
variable. We now consider the case of an binary outcome that denotes severe toxicity. We then estimate
the risk of severe toxicity at each cycle. Model (6) is used for conducting the patients’ allocation, and
model (7) provides estimate and test of the time effect after completion of the trial.

logit q3

(
dk, tij

)
= 𝛼′

2 − 𝛽′1 × dk − ui (6)

logit qj3

(
dk, tij

)
= 𝛼′

2 − 𝛽′1 × dk − 𝛽′2 × tij − ui (7)

where ui ∼  (0, 𝜎′2
0 ) and ti1 = 0. As previously, 𝛽′1 can be either estimated from the data or taken as a

known value 𝛽′1 = 𝛽c.
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3.5. Dose escalation procedure

The general dose-escalation procedure is similar whether outcomes are ordinal or binary. Following the
principle of adaptive design for oncology dose-finding trials, estimates p̂3(dk) obtained either from mod-
els (4) or (6) are used to conduct dose allocation. The maximum likelihood arises at the boundary of the
parameter space provided at least one outcome of each category g has been observed and measurements
have been collected over more than one cycle. This is generally called the heterogeneity requirement.
The design then consists of two steps with a run-in that is driven by using a ‘classic’ CRML based on
data from cycle 1.

Patients are sequentially enrolled in the trial starting at the lowest dose. After heterogeneity in the
outcomes has been observed, the decision criteria is to select the dose dk minimizing |p̂3(dk) − 𝜏|. A
new patient is included when the previous patients have completed at least one cycle of treatment. The
overall duration of the trial is therefore not altered compared with the use of cycle 1 only; inclusions can
be grouped. The algorithm can be described as follows:

(1) Run-in: enroll patients according to the CRML based on the first cycle only until sufficient data
have been collected to fit a dose-time-toxicity model.

(2) Before each new inclusion,

(a) fit a mixed-effects model to all collected data, that is, to the outcomes at all cycles for all
patients previously included available at the time of the new inclusion, which in turn provides
estimates of the probability of toxicity for mean patient ui = 0.

(b) evaluate the decision criteria and identify the dose for which the estimate of the risk of severe
toxicity per cycle is closest to the target 𝜏;

(c) the new patient is treated at this current recommended dose;

(3) The trial is terminated when the maximum number of patients have been treated or after certain
stopping rules have been reached [23, 24].

Upon completion of the trial, the time trend can be investigated from models (5) or (7), which is tested
with likelihood ratio test. In the absence of a significant time effect, the dose closest to the target is
recommended. At this dose, the accuracy of the estimate of the probability of severe toxicity is esti-
mated using the delta method. In the following, we denote the two CRM designs based on longitudinal
ordinal data and longitudinal binary data as POMM-CRML and based on the logistic mixed effect
model (LMM-CRML).

3.6. Illustrating example

In a step-by-step simulation, we illustrate the process of a prospective trial carried out using either a
proportional odds model (POMM-CRML) for repeated ordinal data or a logistic model where the dose
parameter is offset (LMM-CRMLd̄) for repeated binary data; a maximum of six cycles was assumed.
The target per cycle probability of toxicity was 0.25. A latent variable, zij, has been generated from the
uniform distribution over (0,1) for each patient at each cycle that represents the sensitivity of the patient
to the risk of toxicity at any dose level [25]. This variable has then been categorized either as an ordinal
variable with three modalities or as a binary variable, according to which of the two methods we applied.
The same data were then used for both approaches even if the doses’ allocation was different between the
two approaches. For instance, suppose that the latent variable z71 = 0.38 describes subject 7 at cycle 1;
suppose that following the POMM-CRML, this subject is allocated at x7 = d3 with p3(d3) = 0.20 and
p2 = 1 − q1(d3) = 0.42; then subject 7 would have grade 2 toxicity. Conversely, suppose that with the
LMM-CRMLd̄, patient 7 would be allocated to x7 = d4 with p3(d4) = 0.45; then this same subject 7
would have had grade 3 toxicity.

The history of this simulation is given in Table I. A total of 16 subjects are presented. We took the cycle
as a unit of time and we assumed that a new patient was enrolled after each new cycle. Therefore, time
equals the number of simulated patients. At each time point, up to six new observations were collected.
For instance, after time 3, three patients had been enrolled who where followed up for three, two, and one
cycles, respectively. Patient 2 went off study after grade 3 toxicity and had no data after cycle 1. Black
and gray colors alternate to facilitate the visualization of observations at the same time points.

Escalation stage consisted in a sequence of one patient at each of the three first dose levels. Then a first
severe toxicity occurred.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 2983–2998
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POMM-CRML. After three patients, the model could not be fitted and despite the first DLT, dose level
3 was maintained up to time 6. A total of six cycles of follow-up had then been observed for patients 1
and, respectively, 5, 4, 3, and 2 for subsequent patients. Fitting the POMM on the 18 first observations
(six patients) was possible only if the dose effect was offset. Estimates of the risk of severe toxicity for
a patient u7 = 0 were as follows: 0.01, 0.04, 0.11, 0.25, 0.41, and 0.64. Based on these estimates, d4
was selected as the best current MTD. At time 7, four additional observations were available, and the
POMM could be fitted. The time-dose-toxicity relationship was updated after each new observation was
collected. After the 16 subjects had been included and followed up to six cycles or first severe toxicity, the
final estimates of the risk of severe toxicity for a patient ui = 0 were 0, 0.02, 0.20, 0.69, 0.92, and 0.99;
the risk of moderate toxicity was low: 0, 0.01, 0.13, 0.12, 0.04, and 0; dose level 3 was recommended for
phase II.

LMM-CRMLd̄. The same simulation was conducted with the LMM-CRMLd̄ with 𝛽1 fixed to 𝛽c = 2.42.
Despite the same outcomes as in the previous simulation were used, dose allocation rapidly differed and
x4 = d2. After subject 10, dose allocation settled down at d4 that was eventually identified as the MTD.
Estimate of the variance of the random intercept was almost 0 until 14 subjects had been included, which
illustrates the lack of reliability of such estimates with very low sample sizes. The final estimates of
the risk of severe toxicity were as follows: 0.01, 0.05, 0.15, 0.31, 0.48, and 0.71, which was markedly
different from the estimate obtained using POMM. Interestingly, had we fit a more flexible logistic model
on the final data set, we would have obtained the following estimates: 𝛽1 = 8.1, 𝛼1 = −5.2, and 𝜎2

0 = 7.3,
and the risk of severe toxicity for a patient ui = 0 would then have been as follows: 0, 0, 0.06, 0.62, 0.85,
and 0.99.

3.7. Time-to-event CRM

Longitudinal analysis is contrasted with the tite-CRM that has been described in length elsewhere [9,26].
The outcome of interest is the first severe toxicity during a predefined follow-up period. Consider that
the binary outcome Yi denoting DLT is now measured over a period T corresponding to several cycles
of treatment. At a given time point t < T of the trial, Yi may be viewed as censored if no DLT has been
observed. Cheung and Chappell proposed to extend the CRM by considering a model of the dose-toxicity
relation weighted by each patient’s individual follow-up. The authors investigated a simple linear weight
function w(t,T) = t

T
that assumes that the hazard of DLT is uniform over T . An adaptive weighting

scheme independent of the dose effect is an alternative option, with weights depending on the timing of
events in previous patients. This weighting scheme is preferable if the censoring rate is high [27]. Design
and analysis are then very similar to those of CRM, except that incomplete data can be used and new
patients can be enrolled even when some patients are still on study. In fact, the tite-CRM would lead
to exactly the same inference as a classic CRM approach that would use a DLT assessment period of T
without early dropout for reasons other than toxicity.

4. Operating characteristics

A simulation study was conducted to assess the operating characteristics of using simplified models with
binary data to identify the MTD and to detect time trends compared with the use of ordinal data. As a
benchmark, we also ran the CRML based on the first cycle only. We focused on the distribution of the
final recommended dose level, the distribution of the allocated doses (that is the risk of under and over
dosing of the patients), and the ability to detect a time trend when it exists.

4.1. Simulation setting

The following approaches based on DLT at cycle 1 or based on repeated ordinal or binary outcomes were
compared:

CRML: using likelihood inference on the binary outcome observed on cycle 1. A logistic working model
with the dose parameter set was chosen. Following [22], this slope parameter was set to 𝛽c = 2.42 so
that if the risk of DLT at a given dose was 0.25, then the predicted value at the next higher dose was
about 0.40 and at the next lower dose was 0.11. Before any heterogeneity among the outcomes had
been observed, dose levels were escalated after each patient had tolerated the previous dose level.
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LMM-CRML: CRML was used for the run-in. Then, once heterogeneity in the observations had been
reached, model (6) was fitted after each new observation. Two parameterizations were compared:
the dose parameter 𝛽1 was either freely estimated or it was fixed to 𝛽1 = 𝛽c = 2.42; note that 𝛽c is
different from the true parameters 𝛽1 in all three scenarios.

POMM-CRML: CRML was used for the run-in. Model (4) was then fitted after each new observation.
Systematic diagnostic tools were applied to detect estimation issues; apart from nonconvergence
indicated by the optimization criteria, standard deviation of the estimates for the parameters had to be
no more than 10-fold higher than the true parameter. Two parameterizations were compared where
dose parameter 𝛽1 was either estimated or set to 𝛽c = 2.42.

Finally, we also report the possibility of running a trial with the CRML based on cycle 1 only, to collect
the data at all cycles and to retrospectively analyze the longitudinal data after trial completion. This would
correspond to a phase I trial targeting the MTD defined on the first cycle only with a recommended dose
for phase 2 defined on all cycles. We will compare the performances of this retrospective assessment of
longitudinal data with those of a prospective use.

Data generation. We assumed that a maximum of K = 6 increasing dose levels taking the values 4.1, 4.8,
5.3, 5.7, 6.0, and 6.4 could be escalated. These doses correspond to the log of a dose-toxicity relationship
used in [28]. Ordinal toxicity at each cycle of treatment j = 1,… , J was generated from a proportional
odds mixed-effect model that related the risk of each category of toxicity to the dose and the cycle; cycle
was included as a categorical variable associated with J−1 parameters. Three dose-toxicity relationships
denoted A, B, and C were explored, assuming either steep or smooth dose slope as this is a key driver of
the performance of any methods [22]. The MTDs (dose at which the risk of DLT per cycle is closest to the
target, 𝜏 = 0.25) were d4, d6, and d2 for the scenarios A, B, and C, respectively. As an illustration, the true
risks of toxicity at cycle 1 for an average patient ui = 0 in scenario A is plotted in Figure 1 (plain lines).
The figure also displays the ‘working’ model that we built by fixing the slope parameter 𝛽1 to 𝛽c = 2.42
(dashed line). As it is unlikely that the true shape of the dose-toxicity curve is known in advance in first-
in human trials, none of the true relationships corresponds to the ‘working’ model. In scenarios B and
C, all data were generated without time effect. Conversely, in scenario A, in addition to the case where
risk of toxicity was stable in time, four relations between time and the risk of toxicity were investigated
that were characterized by: (i) a log-linear time trend (odd ratio (OR)=1.3 per additional cycle); (ii) a
piecewise time trend with no effect before cycle 3 and increased effect thereafter (OR=1.3 at cycles 4 to
6 compared with cycle 1); and (iii and iv) nonproportional odds time-toxicity relations. All parameters
used for generating data are listed in Table II.
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Figure 1. True relations between dose and risk of severe (dark line) and moderate or severe (gray line) toxicity
in the absence of time effect for scenario A (plain lines) and the related mis-specified ‘working’ models (dashed

lines). The horizontal line represents the target percentile.
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Table II. True parameters’ values. In scenario A(ii), cycle is treated as
categorical variable with five binary indicators. Scenarios A(iii) and A(iv)
break the proportional odds hypothesis and 𝛽2 is provided for the two
outcome categories.

Scenario 𝛼1 𝛼2 𝛽1 𝛽2 𝜎2

A 9.9 11.28 1.78 0 0.5
B 9.9 11.28 1.58 0 0.5
C 9.9 11.28 2.11 0 0.5

A(i) 9.9 11.28 1.78 0.26 0.5
A(ii) 9.9 11.28 1.78 (0,0,0.26,0.19,0.21) 0.5

A(iii) 9.9 11.28 1.78
𝛽2,g=2 = 0.26

0.5
𝛽2,g=1 = 0.13

A(iv) 9.9 11.28 1.78
𝛽2,g=2 = 0.13

0.5
𝛽2,g=1 = 0.26

Patients could receive a maximum of six cycles of treatment. We further assumed that conditional on
a random intercept; the risks of toxicity at the various cycles were independent for a given patient. We
did not consider random dose or random cycle effects. The value of the random intercept, ui, was drawn
from a normal distribution with variance 𝜎2

0 = 0.5.
A simulated trial was completed when 30 patients had been sequentially included and evaluated. We

assumed that a new patient entered the trial after each cycle. Furthermore, the patient’s follow-up ended
after onset of the first DLT or after completion of the six cycles.

Simulations were carried out with an R-program and packages ordinal for fitting POMM and lme4
for fitting logistic model on repeated binary data. Each simulated trial was repeated 1000 times, providing
distributions of the parameters used for evaluation.

4.2. Results

Absence of a cycle effect. Distributions of the final recommendations for the various models and designs
are listed in Table III. The mean number of observations was between 100 and 120, corresponding to
an average of 3.5 to 4 cycles per patient. Fitting POMM at some point in the simulated trial could be
performed in 85% to 100% of the simulations, except in scenario B. In the absence of a time effect, for
all scenarios, analysis of longitudinal data considerably improved identification of the correct MTD. A
greater improvement was obtained for models in which the slope was not estimated from the data. The
absolute gain in accuracy (percentage of correct selection) was as high as 16% compared with the CRML
in scenario B. Conversely using ordinal longitudinal data did not significantly increase the accuracy rate
compared with using simple longitudinal binary data. This difference is in line with previous reports that
investigated the added value of ordinal outcomes on the first cycle only [11, 12] and concluded to very
limited gains.

When using LMM-CRML in scenario B (MTD= d6), the logistic model with four parameters (the
two intercepts, the dose effect, and the variance of the random intercept) could not be fitted in a large
proportion of simulations. This can be partly explained by the fact that if no severe toxicity was observed
before d6, events were concentrated at that level as no higher dose levels could be explored, and the model
was not identifiable.

In scenario C, in which all doses were associated with high risks of severe toxicity, the probability
of picking up the right dose was as high as 80% or 90% after 30 patients, which indicates that an early
stopping rule would be needed.

Lastly, retrospective analysis of longitudinal data collected after the CRML based on DLT observed
during first cycle demonstrated fairly similar performances, except that convergence issues were more
frequent in case the model was constraint with a constant dose parameter. This reinforces the idea that
significant improvement can be obtained even without modifying the process of a trial, by just analyzing
all the collected data as long as adaptive design is used.

Distribution of dose allocation was in line with the final recommendations; the risk of under-dosing
or over-dosing was reduced when we accounted for repeated data compared with using cycle 1 only
(Table IV). Analysis of ordinal data also contributed to enroll a higher frequency of patients at doses
adjacent to the MTD than the analysis of binary data. The risk of over-dosing was somehow controlled;
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Table III. Distribution of final recommendations after 1000 simulations. POMM-CRMLd̄
and LMM-CRMLd̄ denote the POMM-CRML and the LMM-CRML respectively in which
the dose parameter is set up and not estimated. P/R indicates whether longitudinal data were
used prospectively (P) or retrospectively (R) after completion of data collection using a classic
CRM. ♯ cy. stands for number of cycles and CV indicates the percentage of simulations that
converged; p3(dk) and p2+(dk) are the probabilities of severe and moderate or severe toxicity
per cycle in the absence of a cycle effect for an ‘average’ patient ui = 0. Bold entries indicates
the true target dose.

Scenario Model P/R d1 d2 d3 d4 d5 d6 ♯ cy. CV

p3(dk) 0.02 0.06 0.14 .𝟐𝟒 0.35 0.53
p2+(dk) 0.09 0.21 0.40 𝟎.𝟓𝟗 0.71 0.82

A CRML P 0 4 28 48 19 1 30 100
POMM-CRMLd̄ P 0 0 16 73 11 0 107 89

R 0 0 20 71 9 0 107 84
POMM-CRML P 0 1 23 61 14 0 117 96

R 0 2 22 57 20 0 110 100
LMM-CRMLd̄ P 0 0 17 71 12 1 110 100

R 0 0 20 68 12 0 110 100
LMM-CRML P 0 1 23 60 13 3 110 98

R 0 0 27 63 10 0 110 100

p3(dk) 0.01 0.02 0.05 0.09 0.14 𝟎.𝟐𝟒
p2+(dk) 0.03 0.09 0.18 0.29 0.40 𝟎.𝟓𝟓

B CRML P 0 0 2 6 32 60 30 100
POMM-CRMLd̄ P 0 0 0 1 17 82 118 69

R 0 0 0 1 25 74 124 80
POMM-CRML P 0 0 1 1 21 77 119 96

R 0 0 0 2 20 78 124 100
LMM-CRMLd̄ P 0 0 0 0 19 81 118 100

R 0 0 0 1 24 75 124 100
LMM-CRML P 0 0 0 3 30 64 119 87

R 0 0 0 3 23 74 124 95

p3(dk) 0.07 𝟎.𝟐𝟒 0.48 0.68 0.80 0.88
p2+(dk) 0.22 𝟎.𝟓𝟔 0.78 0.89 0.94 0.97

C CRML P 16 77 7 0 0 0 30 100
POMM-CRMLd̄ P 1 98 1 0 0 0 101 84

R 1 98 1 0 0 0 107 65
POMM-CRML P 17 82 2 0 0 0 107 85

R 7 87 8 1 0 0 107 92
LMM-CRMLd̄ P 3 96 1 0 0 0 103 100

R 2 96 2 0 0 0 107 100
LMM-CRML P 26 72 2 0 0 0 110 85

R 13 82 4 0 0 0 118 93

in scenarios A and C, the proportion of patients who received a dose higher than the MTD was lower with
methods making full use of all cycles than with the CRML. No difference was observed among methods
based on longitudinal data.

Power for detecting a cycle effect. Table V reports the percentage of simulations in which the test of
the time effect was not null at the 5% level. Tests were carried out after simulation of 30 patients. The
test for the time effect was significant in 46% of simulations of ordinal data (POMM-CRML) and 38%
of simulations of binary data (LMM-CRML) in scenario A(i) (OR=1.3 at cycle j compared with cycle
j − 1 and j > 1). As expected, in the case of a non log-linear relationship between time and toxicity
(scenario A(ii)), the power was lower. Loss was even more marked when modeling binary data; results
with simple logistic models were fairly disappointing. When using the POMM-CRML, violation of the
PO assumption (scenario A(iii) and A(iv)) also entailed a loss in power, but detection of time trend was
still more effective with ordinal data than with binary data. This loss was more marked when the time
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Table IV. Distribution of patients’ allocations after 1000 simulations.
POMM-CRMLd̄ and LMM-CRMLd̄ denote the POMM-CRML and the
LMM-CRML respectively in which the dose parameter is set up and not
estimated. p3(dk) and p2+(dk) are the probabilities of severe and mod-
erate or severe toxicity per cycle in the absence of a cycle effect for an
‘average’ patient ui = 0. Bold entries indicate the true target dose.

Scenario Model d1 d2 d3 d4 d5 d6

p3(dk) 0.02 0.06 0.14 𝟎.𝟐𝟒 0.35 0.53
p2+(dk) 0.09 0.21 0.40 𝟎.𝟓𝟗 0.71 0.82

A CRML 6 12 27 31 19 5
POMM-CRMLd̄ 3 6 25 46 16 4
POMM-CRML 4 9 28 41 16 5
LMM-CRMLd̄ 4 7 24 46 15 4
LMM-CRML 5 9 26 41 15 5

p3(dk) 0.01 0.02 0.05 0.09 0.14 𝟎.𝟐𝟒
p2+(dk) 0.03 0.09 0.18 0.29 0.40 𝟎.𝟓𝟓

B CRML 4 5 7 11 28 44
POMM-CRMLd̄ 3 4 5 7 21 59
POMM-CRML 3 5 6 9 23 53
LMM-CRMLd̄ 4 4 5 8 23 57
LMM-CRML 4 4 5 11 26 51

p3(dk) 0.07 𝟎.𝟐𝟒 0.48 0.68 0.80 0.88
p2+(dk) 0.22 𝟎.𝟓𝟔 0.78 0.89 0.94 0.97

C CRML 29 55 13 2 1 0
POMM-CRMLd̄ 9 79 10 2 1 0
POMM-CRML 21 67 9 2 1 0
LMM-CRMLd̄ 16 72 10 2 0 0
LMM-CRML 28 60 9 2 0 0

Table V. Percentages of simulations where a significant time effect was detected for different mod-
els applied on scenario A . ‘PO’ stands for proportional odds; ‘Y’ and ‘N’ indicates wether the
time-toxicity relationship follows proportional odds assumption. The lines (i) and (ii) correspond
to scenarios with log linear and stepwise cycle effect respectively, and (iii) and (iv) to non odds
proportional scenarios.

Scenario PO relation POMM-CRMLd̄ POMM-CRML LMM-CRMLd̄ LMM -CRML

no time effect 0.07 0.05 0.05 0.05
A(i)

Y
0.64 0.54 0.42 0.36

A(ii) 0.43 0.35 0.27 0.24

A(iii)
N

0.53 0.43 - -
A(iv) 0.33 0.26 - -

effect was stronger on severe (less frequent) toxicity than on moderate or severe toxicity compared with
the opposite scenario A(iii). This again shows the added value of richer variables.

The mis-specified models in which the dose effect was set up and not estimated outperformed more
flexible models; for example, in scenario Ai, the time test was significant in 64% of simulations, compared
with 46% with a model comprising an additional dose parameter to be estimated. The same trend was
obtained with binary data as with ordinal data and for all scenarios. The false-positive rate in the absence
of a time effect was 5−7% of simulations, indicating an acceptable type I error rate control with likelihood
ratio tests despite the limited sample sizes.

5. Applications

The data introduced in Section 2 were reanalysed to identify the RP2D and to detect a time trend. The tar-
geted probability of severe toxicity per cycle was set at 20%, to match the target used in the two trials. As
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Table VI. Erlotinib+RT reanalysis: observed and predicted per cycle
probability of graded toxicity; G3: Severe toxicity, G2+: Moderate
or severe toxicity;pg(dk) is the probability of toxicity per cycle in the
absence of a time effect for an ‘average’ patient ui = 0. ♯ stands for
number; the bold column corresponds to the final recommended dose.

dk d1 d2 𝐝𝟑

♯ of patients 6 6 8
♯ of cycles 26 34 36

♯ of G2 4 8 7
♯ of G3 2 1 4

% of G3 (per cycle) 8 3 11
% of G2+ (per cycle) 23 26 31

Analysis using POMM
p̂2+(dk), in % per cycle 23 27 31
95%CI (p̂2+(d3)) 19-46
p̂3(dk), in % per cycle 6 7 9
95%CI (p̂3(d3)) 4-19

Analysis using logistic model with random intercept (LMM)
p̂3(dk), in % per cycle 5 7 9
95%CI (p̂3(d3)) 3-24

retrospective analysis of adaptive designs is not directly feasible and requires further assumptions, only
final estimates of the probability of toxicity are provided, bearing in mind that if methods for longitudi-
nal data had been used to conduct the trial, the dose allocation would not have been the same; analyzing
data derived from a different design results in a certain degree of loss of efficiency. Time-to-event CRM
was also retrospectively applied to estimate the cumulative risk of DLT over the first six cycles.

5.1. The ITCC/ erlotinib +RT trial

Models (4) and (5) were estimated by adjusting for dose. Estimates of fixed intercepts, time, and dose
were then 𝜃̂ = (𝛼1 = 1.78, 𝛼2 = 3.34, 𝛽1 = 0.8, 𝛽2 = −0.03). The variance of the random effect, 𝜎2

0 , could
not be estimated. The probability of toxicity did not significantly vary over time (p = 0.83), suggesting
the absence of delayed effect; estimates of the model with dose only gave 𝜃̂ = (𝛼1 = 1.85, 𝛼2 = 3.41, 𝛽1 =
0.80). The estimated probabilities of toxicity per cycle at each dose are shown in Table VI. The estimated
probability of severe or moderate toxicity per cycle was 30.8% at the highest level tested. The estimated
probability of severe toxicity was 8.6% (95%CI=3.7 − 18.7%). These estimates are closed to the crude
percentage of grade 3 toxicity per cycle calculated as the mean ratio of the number of patients with grade
3/4 over the patients at risk at a given cycle. This risk appears lower compared with the estimates reported
in Section 2 (16% at the highest level with 95%CI: 4 − 45%), but one should keep in mind that the DLT
assessment period was two cycles, mechanically increasing the risk of toxicity compared with a risk
calculated over a period of one cycle only. The precision measured by half the length of the confidence
interval was much narrower with a POMM compared with a logistic model based on cycle 1 only (7.5 vs
20). The added value of ordinal longitudinal data over binary longitudinal data was also reflected by the
accuracy of the estimate with precision of the 95% confidence interval of 7.5 versus 10.6, respectively.

The risk for a child to experience severe toxicity over the first six cycles was 37% (95%CI=12–72%)
at the recommended dose d3, as obtained from tite-CRM.

5.2. The EORTC/R-Viscum Trial

In this trial, doses were transformed on the (0, 1) scale as in the original trial and took the following values:
0.0035, 0.005, 0.009, 0.015, 0.024, 0.035, 0.05, 0.07, 0.11, 0.2, 0.33, 0.48, 0.62, and 0.74. Estimates
of fixed intercepts, time, dose, and variance of the random intercept from model (5 )were 𝜃̂ = (𝛼1 =
0.68, 𝛼2 = 3.36, 𝛽1 = 2.09, 𝛽2 = −0.024, 𝜎2

0 = 0.80). The probability of toxicity did not vary significantly
with time (p = 0.27). Estimates of the model with dose as the only covariate gave 𝜃 = (𝛼1 = 1.0, 𝛼2 =
3.78, 𝛽1 = 2.48, 𝜎2

0 = 1.23). The estimated probabilities of toxicity per cycle at each dose are shown in
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Table VII. r-Viscum trial reanalysis: observed and predicted probability of graded toxicity per cycle. G3:
Severe toxicity, G2+: Moderate or severe toxicity; symbol ♯ stands for numbers and cy. for cycle; pg(dk) is
the probability of toxicity per cycle in the absence of a time effect for a patient ui = 0. The four lowest dose
levels were collapsed into a single column. The bold column corresponds to the final recommended dose.

Dose (ng/kg)
d1 − d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 𝐝𝟏𝟒
10-100 200 400 800 1600 2400 3200 4000 4800 5600 6400

♯ of patients 4 1 1 1 1 1 4 6 10 7 5
♯ of cycles 15 2 1 2 2 2 13 11 25 13 8

♯ of G2 3 0 0 0 1 2 4 4 10 5 4
♯ of G3 2 0 1 0 1 0 0 1 2 1 2

% of G3 (per cycle) 0 20 0 100 0 50 0 9 8 8 25
% of G2+ (per cycle) 35 0 100 0 50 50 31 46 48 46 75

Analysis using POMM
p̂2+(dk) in % per cycle 32 32 33 34 36 40 46 54 61 66
95%CI (p̂2+(d13)) 49-84
p̂3(dk) in % per cycle 4 4 4 5 5 6 8 10 14 17
95%CI (p̂3(d13)) 6-28

Analysis using logistic model with random intercept
p̂3(dk) in % per cycle 8 8 8 8 9 10 12 14 17 19
95%CI (p̂3(d13)) 5-40

Table VII. The first four columns were collapsed to form a single column labeled ‘0 – 100’. According
to the POMM, the recommended dose is associated with a risk of severe toxicity of 14% (95%CI=6–
28%) per cycle and a risk of moderate or severe toxicity of 61% (95%CI=49–84%) per cycle. Point
estimate was close to the one obtained with binary data only (17% with a 95% confidence from 5% to
40%). Longitudinal binary data did not allow for a gain in precision over the estimate based on cycle 1
only. Of note, the model of the CRML used in the trial was less-parameterized with a single parameter,
which may explain the smaller variance. As expected due to the limited number of cycles that could be
administered, accuracy of the estimate was not strongly increased when using repeated data. The relative
gain in precision computed as the ratio of the precisions of the two confidence intervals was 27% over
the classic CRML and 45% over the LMM-CRML.

Analysis of data collected during all cycles improved the accuracy of the estimate of the risk of severe
toxicity. As all toxic side effects were reversible, a longitudinal model is appealing even though patients
could receive only very few cycles. Additional information is not difficult to interpret and is consistent
with the usual estimates from the first treatment cycle. No strong time trend could be detected in the
examples we analyzed.

6. Discussion

Methodological research on dose-finding studies has been very active in the last decade; the main fields
of statistical developments include optimization of the CRM [29] and investigation of various alloca-
tion rules [30], joint modeling of toxicity and activity endpoints [31–33], and integration of time into
assessment of the endpoint [4, 9]. However, new proposals have usually been accompanied by increased
complexity of models raising estimation and robustness issues in the context of scarce data. Although
estimations are usually tackled with a Bayesian approach and mildly informative priors, the additional
variability introduced by the numerous parameters together with the poor information contained in binary
variables limit the performances of the dose-finding process. For instance, Simon et al. developed a K-
max model to retrospectively analyze longitudinal data of phase I trials [4], but Legezda and Ibrahim
showed the model to be intractable in a prospective dose-finding study [34]. They proposed simplified
pharmacokinetic–pharmacodynamic models to estimate the best dose to be allocated to each patient on
the basis of a binary outcome, if they received numerous cycles of treatment without going off study.

In this study, we demonstrate that using all cycles of treatment increase the accuracy of MTD identi-
fication and allows detection of a time trend, providing essential information to recommend a dose for
phase II. The benefit of using information from repeated cycles is much greater than the optimal per-
formance that could be theoretically obtained when using cycle 1 only [25, 35]. Furthermore, modeling
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ordinal grades of toxicity increases the power to detect time trends compared with binary data, even if the
time function is mis-specified and if the PO assumption is not verified. Toxicity scores as developed by
Yuan [36], Rogatko [37], or Ezzalfani [38] could be even more powerful. Models for longitudinal ordinal
data do not significantly improve the ability to pick the correct dose compared with models for longitudi-
nal binary data; the benefit of richer variables is somehow counterbalanced by the additional parameters
to be estimated. In addition, as the target dose is defined as a risk of severe toxicity, moderate adverse
events only provide indirect information.

The second finding of this study is that simpler models constraining some of the parameters turn out to
be more efficient than more parameterized and more flexible models, in terms of selection of the correct
dose. The sampling rule that consists of systematically recommending the current estimate of the MTD
limits the need for a global goodness-of-fit for all doses [9, 20]. Even though parameters estimates are
likely to be biased, estimates of the probability of toxicity at the final recommended dose should converge
to the true MTD, providing sampling at the dose closest to the target. On the contrary, mis-specified time-
toxicity relationship reduces the power of the test on time; greater attention should be devoted to this
aspect of modeling. In particular, as a simplifying assumption, we assumed that patients could receive the
same dose until they got off-study. In practice, although intra-patient dose escalation is commonly ruled
out in protocols, moderate or severe toxicity may lead to reduce the dose or delay the administration of
a new cycle of treatment. A simple way to account for dose reduction would be to use the administered
dose instead of the planned dose at each cycle as in model (2). However, this may not be consistent with
the pharmacokinetic–pharmacodynamic model that would relate the drug concentration at a time point to
the risk of toxicity. In practice, this model is largely unknown before the first-in-man trial is completed.
The very simple modeling used here may therefore not be optimal. Similar issues are also observed with
the tite-CRM as the time to toxicity is associated to a planned dose and not to the cumulative dose of
treatment received at the time of toxicity. This model may be mis-specified if there is a cumulative risk
of toxicity as with radiotherapy treatments. In this setting, finding the correct balance between model
complexity and biases is challenging and should be decided on a case by case basis.

Random effect models are powerful tools to estimate dose effects on longitudinal data. In phase I trials,
patients go off study because of severe toxicity or of progression. When a patient goes off study because of
severe toxicity, outcomes at subsequent cycles are then missing. We assume that the risk of progression at
a given dose is independent of the DLT. We then may consider that the missingness process is independent
of the unmeasured toxicity value. Generalized linear mixed model with maximum likelihood estimator
naturally addresses missing at random data. However, estimation of the variance of the random effect
is challenging when few repeated measurements are available. Lack of accuracy in the estimate of this
parameter may impact the dose recommendation. For instance, in scenario A, we fit a proportional odds
model (no random effect) on all data collected from a trial that would have used the CRM to guide dose
escalation. The distribution of final dose recommendations at d3, d4, and d5 was as follows: 24%, 55%,
and 13%, that was slightly less good than the corresponding simulation of POMM-CRML (R) in Table III
(22, 57, and 13, respectively).

Phase I trials provide much more information than a simple binomial outcome. Since the early
2000’s, new classes of molecules have been developed that raise specific issues that cannot be efficiently
addressed using basic methods. There is a converging need from both statisticians and physicians to
improve dose-finding studies. This improvement will be made possible by the use of more informative
variables.
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